Negative Dielectrophoretic Particle Positioning in A Fluidic Flow
نویسندگان
چکیده
In this work, we report the control of a microparticle position within fluid flow based on its size by using a repulsive force generated with negative dielectrophoresis (n-DEP). The n-DEP based fluidic channel, which was consisted of navigator and separator electrodes, was used to manipulate the particle flow in the center of channel and to control the particle position in the fluidic flow. The mixture of 10 μmand 20 μm-diameter particles was introduced into the channel with 30 μm height at 700 μm/s. On applying an AC voltage (23 V peak-peak and 7 MHz) to the navigator electrodes on the upper and lower substrates in a n-DEP frequency region, the suspended microparticles were guided to the center of the fluidic channel and then channelled through the passage gate positioned at the center of the channel. The AC electric field was also applied to separator electrodes, resulting in a formation of flow paths with low electric fields. The separator was consisted of the five band electrodes with the different gap spaces with the adjacent band, which allow to forming the flow paths with different electric fields. The microparticles separately flow in line along the paths formed between the band electrodes, the 10 μm-diameter particles mainly flow through the narrow path and 20 μm-diameter particles through the wide path arranged at the outside from the center. These results indicated that positions of two types of microparticles in the fluidic channel were easily separated and controlled using the n-DEP. The present procedure therefore yields a procedure for the DEP based simple and miniaturized separators.
منابع مشابه
On the design and optimization of micro-fluidic dielectrophoretic devices: a dynamic simulation study.
Microfabricated interdigitated electrode array is a convenient form of electrode geometry for dielectrophoretic trapping of biological particles within micro-fluidic biochips. We have previously reported experimental results and finite element modeling of the holding forces for both positive and negative dielectrophoretic traps on microfabricated interdigitated electrodes within a microfluidic ...
متن کاملAnalysis of particle motion in a micro-fluidic dielectrophoretic device
Interdigitated microelectrodes have found wide applications in manipulating and/or separating biological particles due to their simple structure and easy implementation. Particle behaviors in such interdigitated microelectrode devices are affected by a number of factors, including particle size, electrical potential, chamber geometry and dielectric properties. This paper presents systematical s...
متن کاملDielectrophoretic isolation of cells using 3D microelectrodes featuring castellated blocks.
We present 3D microelectrodes featuring castellated blocks for dielectrophoretically isolating cells. These electrodes provide a more effective dielectrophoretic force field than thin-film surface electrodes and yet immobilize cells near stagnation points across a parabolic flow profile for enhanced cell viability and separation efficiency. Unlike known volumetric electrodes with linear profile...
متن کاملFluidic Oscillators’ Applications, Structures and Mechanisms – A Review
Enhancement of heat and mass transfer and decrease of energy dissipation are great necessities of the evolution of fluid flow devices. Utilizing oscillatory or pulsatile fluid flow for periodic disturbing of velocity and thermal boundary layers is one of the methods with exciting results. Passive methods of generating oscillatory flow are preferred to active methods because of simplicity, no ne...
متن کاملDielectrophoretic effect of nonuniform electric fields on the protoplast cell
In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intelligent Automation & Soft Computing
دوره 18 شماره
صفحات -
تاریخ انتشار 2012